The Location of Child Cyclist Versus Motor Vehicle Collisions in an Urban Environment

Linda Rothman, BScOT, MHSc, Andrew Howard, MD, FRCSC, MSc

The Hospital for Sick Children, Toronto, Canada
Child Health Evaluative Sciences (CHES)

Safety 2010 World Conference, Wed. Sept 22/10 3:00 p.m., Churchill Auditorium
C-4 Sports and Leisure Injury - Road Safety
75% of Canadian children ages 5+ reporting riding a bicycle at least once in previous 12 months.1

Cyclists disproportionately represented in motor vehicle collisions

In 2007, cyclists represented 2.3% of fatalities and 3.1% serious injuries related to motor vehicle collisions, with proportions increasing over previous 5 years.2

Younger cyclists higher fatality and serious injury rates than average for all ages.3 Children <16, accounted for greatest proportion of fatally injured cyclists from 2004-2006.4

Children of different ages use bicycles for different purposes resulting in variation in environmental risk factors.

4. A Quick Look at Fatally Injured Vulnerable Road Users. Transport Canada. Fact Sheet TP 2436E RS-2010-02 June 2010
OBJECTIVE

- To determine the age-specific variation in location of cyclist versus motor vehicle collisions in children ages 1-17 in Toronto, Canada in order to identify possible age-specific prevention strategies for children.
METHODS

- Data Sources:
 - City of Toronto’s Traffic Data Center and Safety Bureau, Police Reported Collisions.
 - Motor vehicle collisions involving cyclists, ages 1-17 from January 1, 2000 - December 31, 2005.
 - Age groups: 1-4, 5-8, 9-12, 13-17
 - Intersection (vs midblock), crossing control
 - Major versus neighbourhood road: Longitudinal/latitudinal coordinates plotted onto Toronto map using ArcGIS software
 - 2001 census data, Statistics Canada: Rates calculated

- SPSS used to calculate odds ratios between age groups.
RESULTS

<table>
<thead>
<tr>
<th>Age</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>20 (1.5%)</td>
</tr>
<tr>
<td>5-8</td>
<td>162 (12.2%)</td>
</tr>
<tr>
<td>9-12</td>
<td>390 (29.4%)</td>
</tr>
<tr>
<td>13-17</td>
<td>753 (56.8%)</td>
</tr>
</tbody>
</table>
RESULTS cont’d.

Child Cyclist and Motor Vehicle Collisions: Rates/100,000

<table>
<thead>
<tr>
<th>Year</th>
<th>1 – 4</th>
<th>5 – 8</th>
<th>9 – 12</th>
<th>13 – 17</th>
<th>All Ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1.39</td>
<td>28.96</td>
<td>62.86</td>
<td>97.38</td>
<td>47.24</td>
</tr>
<tr>
<td>2001</td>
<td>2.79</td>
<td>24.82</td>
<td>69.85</td>
<td>84.49</td>
<td>44.74</td>
</tr>
<tr>
<td>2002</td>
<td>1.39</td>
<td>19.86</td>
<td>65.48</td>
<td>97.38</td>
<td>45.70</td>
</tr>
<tr>
<td>2003</td>
<td>2.79</td>
<td>20.68</td>
<td>48.02</td>
<td>93.80</td>
<td>41.46</td>
</tr>
<tr>
<td>2004</td>
<td>2.09</td>
<td>24.82</td>
<td>48.02</td>
<td>89.50</td>
<td>41.07</td>
</tr>
<tr>
<td>2005</td>
<td>3.48</td>
<td>14.89</td>
<td>46.27</td>
<td>76.61</td>
<td>35.29</td>
</tr>
</tbody>
</table>

Denominators from 2001 Census as follows:

1-4: 143,515, 5-8: 120,870, 9-12: 114,535, 13-17: 139,665
RESULTS cont’d.

Location of Collision by Age, Unadjusted Odds Ratios

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Major Road</th>
<th></th>
<th>Intersection</th>
<th></th>
<th>Crossing Control</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Odds Ratio</td>
<td>Number</td>
<td>Odds Ratio</td>
<td>Number</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>(95% CI)</td>
<td>(%)</td>
<td>(95% CI)</td>
<td>(%)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>5-8 ref.</td>
<td>49</td>
<td>1.000</td>
<td>54</td>
<td>1.000</td>
<td>47</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>(30.2%)</td>
<td></td>
<td>(36.2%)</td>
<td></td>
<td>(29.2%)</td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td>170</td>
<td>1.78*</td>
<td>227</td>
<td>3.03**</td>
<td>215</td>
<td>3.00**</td>
</tr>
<tr>
<td></td>
<td>(43.6%)</td>
<td>(1.21-2.63)</td>
<td>(63.2%)</td>
<td>(2.03-4.50)</td>
<td>(55.3%)</td>
<td>(2.02-4.45)</td>
</tr>
<tr>
<td>13-17</td>
<td>466</td>
<td>3.74**</td>
<td>504</td>
<td>4.05**</td>
<td>484</td>
<td>4.38**</td>
</tr>
<tr>
<td></td>
<td>(61.9%)</td>
<td>(2.60-5.40)</td>
<td>(69.7%)</td>
<td>(2.80-5.86)</td>
<td>(64.4%)</td>
<td>(3.02-6.35)</td>
</tr>
</tbody>
</table>

* *p*<0.005, ** *p*<.001
DISCUSSION

- Rates increase with increasing age, largest burden 13-17
 - Decreased parental supervision
 - Riskier cycling behaviour
 - More likely to be on roads
- There was a downward trend in cycling collisions that were reported in children over the six year period
 - Better cycling environment in the city?
 - More likely less exposure
DISCUSSION CONT’D

- Older children (13-17) greater odds on major roads, at intersections and crossing controls
 - use more as transportation, on roadways, similar collision patterns to adults

- Younger children (ages 5-8) greater odds on neighborhood roads, midblock, no crossing controls.
 - use more for recreation.

- 9-12 year olds, more of a mix
LIMITATIONS

- Police report collision data
 - May be underreported – especially bicycle collisions, and children
 - Did not specify in database where midblock collisions occurred (on road, off roadway, in driveway, on sidewalk)

- Lack of exposure data - essential in order to understand downward trends.
CONCLUSIONS

- Focus of intervention programs - Important to consider age of children
 - Older children
 - Evidence-based physical environmental modifications on major roadways that work for children
 - Specific education regarding safety when cycling in traffic
 - Younger children
 - More off-roadway options (ie bike paths), to keep children off roadways until ready to negotiate traffic.
Safer Roads for Safer Cycling....